Sunday, 24 June 2012

4th Sem ADA Project File





Algorithm Analysis And Design
Description: http://t0.gstatic.com/images?q=tbn:ANd9GcQVhlRP7tjdzGyAMb-dpScxFO5p5eWMZl0cVRQ7_7HdD4_mmmswOUUQSMb96A

































Submitted By :

B. Tech (IT) 4th sem


Aim : Program  to find longest common subsequence
#include<iostream.h>
#include<stdio.h>
#include<conio.h>
void print(int,int);
char x[10],y[10];
int b[10][10];
void main()
{
 int m,n,i,j,c[10][10];
 clrscr();
 cout<<"Enter the length of first sequence:=";
 fflush(stdin);
 cin>>m;
 cout<<"Enter the first sequence:=\n";
 for(i=1;i<=m;i++)
  {
   fflush(stdin);
   cin>>x[i];
  }

 cout<<"Enter the length of second sequence:=";
 fflush(stdin);
 cin>>n;
 cout<<"Enter the second sequence:=\n";
 for(i=1;i<=n;i++)
  {
    fflush(stdin);
    cin>>y[i];
  }

 for(i=1;i<=m;i++)
 {
   c[i][0]=0;
 }
 for(j=0;j<=n;j++)
 {
   c[0][j]=0;
 }
 for(i=1;i<=m;i++)
 {
   for(j=1;j<=n;j++)
   {
     if(x[i]==y[j])
     {
       c[i][j]=c[i-1][j-1]+1;
       b[i][j]=10;
     }
     else if(c[i-1][j]>=c[i][j-1])
                    {
                      b[i][j]=20;
                    }
                  else
                    {
                      c[i][j]=c[i][j-1];
                      b[i][j]=30;
                    }
   }
 }
 cout<<"The longest common subsequence is:";
 print(m,n);
 getch();
}
void print(int i,int j)
{
  if(i==0||j==0)
  {
    return;
  }
  if(b[i][j]==10)
  {
    print(i-1,j-1);
    cout<<x[i];
  }
  else if(b[i][j]==20)
                {
                  print(i-1,j);
                }
       else
                 print(i,j-1);
}


OUTPUT


Enter the length of first sequence:=4
Enter the first sequence:=acda

Enter the length of second sequence:=6
Enter the second sequence:=
xghtac

The longest common subsequence is: ac


AIM: - WAP To Implement Shortest Path Using Dijkastra’s Algorithm.

#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
void main()
{
int g[20][20],s[15],path[20],mark[20];
int n, source,i,j,u,pred[20];
int count=0;
int min(int a[],int m[],int k);
void printpath(int,int,int[]);
clrscr();
cout<<"Enter the no. of vertices:\t";
cin>>n;
if(n<=0)
{
cout<<"This is meaningless";
exit(1);
}
cout<<"\n";
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
cout<<"Enter the cost of vertex between\t"<<i<<"\tand\t"<<j<<":\t";
cin>>g[i][j];
}
}
cout<<"\nEnter the source vertex:\t";
cin>>source;
cout<<"\nFollowing are the shortest paths from source vertex: "<<"\n";
for(j=1;j<=n;j++)
{
mark[j]=0;
path[j]=999;
pred[j]=0;
}
path[source]=0;
while(count<n)
{
u=min(path,mark,n);
s[++count]=u;
mark[u]=1;
for(i=1;i<=n;i++)
{
if(g[u][i]>0)
{
if(mark[i]!=1)
{
if(path[i]>path[u]+g[u][i])
{
path[i]=path[u]+g[u][i];
pred[i]=u;
}
}
}
}
}
for(i=1;i<=n;i++)
{
printpath(source,i,pred);
if(path[i]!=999)
cout<<"( "<<path[i]<<" )\n";
}
getch();
}
int min(int a[],int m[],int k)
{
int mi=999;
int i,t;
for(i=1;i<=k;i++)
{
if(m[i]!=1)
{
if(mi>=a[i])
{
mi=a[i];
t=i;
}
}
}
return t;
}
void printpath(int x,int i,int p[])
{
cout<<"\n";
if(i==x)
{
cout<<x;
}
else if(p[i]==0)
{          cout<<"There is no path from "<<x<<" to "<<i;
}
else
{printpath(x,p[i],p);
cout<<"........."<<i;
}}

OUTPUT

Enter the no. of vertices:      3

Enter the cost of vertex between 1 and 1:      2
Enter the cost of vertex between 1 and 2:      3
Enter the cost of vertex between 1 and 3:      9
Enter the cost of vertex between 2 and 1:      54
Enter the cost of vertex between 2 and 2:      32
Enter the cost of vertex between 2 and 3:      67
Enter the cost of vertex between 3 and 1:      6
Enter the cost of vertex between 3 and 2:      1
Enter the cost of vertex between 3 and 3:      81

Enter the source vertex:        3

Following are the shortest paths from source vertex:


3.........1(6)

3.........2(1)

3.........3(0)



AIM :  To find the complexity in finding the median of  given elements
#include<iostream.h>
#include<time.h>
#include<conio.h>
void sort (int arr[],int num)
{              int temp=0;
for(int i=0;i<num;i++)
{              for(int j=0;j<(num-1);j++)
{              if(arr[j]>arr[j+1])

{              temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp; 
}              }              }
return;  }
void main()
{
clrscr();
int a[50],b[10],med[10];
int n,m,i,j;
int k=0;
clock_t start,end;
cout<<"enter the no elements";
cin>>n;
for(i=0;i<n;i++)
{              cin>>a[i];             }
Start=clock();
for(i=0;i<n;i++)
{              for(j=0;j<5;j++)
{              b[j]=a[i];
i++;        }
i--;
sort(b,5);
med[k]=b[2];
k++;
m=m+1;
}
sort(med,m);
delay(100);
end=clock();
cout<<"the final median is"<<endl;
if(m%2!=0)
cout<<med[(m/2)];
else
cout<<med[(m/2)]<<"and"<<med[(m/2+1)];
cout<<”Time complexity:”<<((end-start)/CLK_TCK);
getch();
return;
}


OUTPUT

Enter the no of elements :9

5
9
7
2
8
4
3
1
6

Final median is : 5
Time complexity :0.10989





AIM : TO FIND COMPLEXITY OF MERGE SORT TECHNIQUE
#include<iostream.h>
#include<conio.h>
#include<dos.h>
#include<time.h>

void  merge(int a[], int p, int q, int r1)
{
 int n1=q-p+1;
 int n2=r1-q;
 int l[20],r[20];
 for(i=0;<n1;i++)
 { l[i]=a[p+i];}
 For(j=0;j<n2;j++)
 { r[j]=a[q+j+1];}
 l[n1+1]=999999;
 r[n2+1]=999999;
 for(int k=p;k<=r1;k++0
  {
    if(l[i]<=r[j])
     {a[k]=l[i]; i++;}
   else
    {a[k]=r[j];j++;}
  }
 } 

void  mergesort(int a[], int p, int r)
{
int q;
if(q<r)
{
 q=(p+r)/2;
 mergesort(a,p,q);
 mergesort(a,q+1,r);
 merge(a,p,q,r);
}
}
void main()
 {
int a[20],i,j,n;
clock_t start,end;
cout<<"enter array size :";cin>>n;
cout<<”\n enter elements:”;
for(i=0;i<n;i++)
 { cin>>a[i];}
 start=clock();
 mergesort(a,0,n);
 delay(100);
 end=clock();
 cout<<"\n\n";
 cout<<”\n\nSorted array:”;
 for(i=0;i<n;i++)
 {cout<<a[i];}
 cout<<"\n\n COMPLEXITY :"<<(end-start)/CLK_TCK;
 getch();
}



Output

Enter the size of array :5
Enter elements :2
9
7
5
0

Sorted array : 0
2
5
7
9

COMPLEXITY: 0.1098




AIM :   To find the complexity of linear search and binary search
#include<iostream.h>
#include<conio.h>
#include<time.h>
#include<dos.h>

void main()
{
 clrscr();
 clock_t start,end;
 int ch;
 int arr[10];
 cout<<"\n Enter choice ";
 cout<<"\n 1. Binary search ";
 cout<<"\n 2. Linear Search \n";
 cin>>ch;
 switch(ch)
 {
  case 1 :
  int no1,lb,ub,mid,item1,pos1=-1;
  cout<<"\n Enter the no. of elements in the array(not exceeding 10)";
  cin>>no1;
  lb=0;
  ub=no1;
  mid=(lb+ub)/2;
  cout<<"\n Enter the array(sorted order) ";
  for(int i=0;i<no1;i++)
  {
   cout<<"\n"<<i+1<<" ";
   cin>>arr[i];
  }
  cout<<"\n Entered array ";
  for(i=0;i<no1;i++)
  {
   cout<<" "<<arr[i];
  }
  cout<<"\n Enter item to be searched ";
  cin>>item1;

  start=clock();
  while(lb<=ub)
  {
  mid=(lb+ub)/2;
   if(arr[mid]==item1)
   {
    pos1=mid;
    break;
   }
   else if(arr[mid]>item1)
   {
    ub=mid-1;
   }
   else
   {
    lb=mid+1;
   }

  }
  delay(100);
  end=clock();
  if(pos1==-1)
  {
   cout<<"\n Element not found ";
  }
  else
  {
   cout<<"\n Element found at position "<<pos1+1;
  }
  cout<<"\n Time complexity "<<(end-start)/CLK_TCK;
  break;

  case 2 :
  int pos2=-1,no2,item2;
  cout<<"\n Enter number if elements on array(not exceeding 10) ";
  cin>>no2;
  cout<<"\n Enter array ";
  for(i=0;i<no2;i++)
  {
   cout<<"\n"<<i+1<<" ";
   cin>>arr[i];
  }

  for(i=0;i<no2;i++)
  {
   cout<<" "<<arr[i];
  }

  cout<<"\n Enter item to be searched ";
  cin>>item2;
  start=clock();
  for(i=0;i<no2;i++)
  {
   if(item2==arr[i])
   {
    pos2=i;
    break;
   }
  }
  delay(100);
  end=clock();
  if(pos2==-1)
  {
   cout<<"\n Element not found ";
  }
  else
  {
   cout<<"\n Element found at position "<<pos2;
  }
  cout<<"\n Time complexity "<<(end-start)/CLK_TCK;
  break;
 }
 getch();
}



OUTPUT

Enter choice

1.BINARY SEARCH
2.LINEAR SEARCH

1

ENTER THE NUMBER OF ELEMENTS ON ARRAY : 5

ENTER SORTED ARRAY

 2
 4
 5
 7
 8
ENTER ELEMENT To BE SEARCHED: 7

ELEMENT FOUND AT POSITION 4
TIME COMPLEXIBILITY 0.10989 


Enter choice

1.BINARY SEARCH
2.LINEAR SEARCH

2

ENTER THE NUMBER OF ELEMENTS ON ARRAY : 4

ENTER ARRAY

 4
 8
 3
 10
 ENTER ELEMENT To BE SEARCHED: 3

ELEMENT FOUND AT POSITION 3
TIME COMPLEXIBILITY 0.10903 


AIM : TO FIND OUT THE COMPLEXITY OF BUBBLE , INSERTION AND SELECTION SORTING METHODS
#include<iostream.h>
#include<conio.h>

Void bubble(int a[], int s)
 {
   Int y;
   for(int x=0; x<n; x++)

      {for(y=0; y<n-1; y++)
            {
                  if(array[y]>array[y+1])
                  {
                        int temp = array[y+1];
                        array[y+1] = array[y];
                        array[y] = temp;
                  }}}
  cout<<"The array after BUBBLE sorting is : ";
  for(i=0;i<s;i++)
  cout<<a[i]<<"  ";
}
Void insert(int a[], int n)
{
  for(i=2; i<=n; i++)
  {
   temp = a[i];
   j = i-1;
   while(temp<a[j] && j>=1)
   {
    a[j+1] = a[j];
    j = j-1;
   }
   a[j+1] = temp;
  }
  cout<<"The array after INSERTION sorting is : ";
  for(i=0;i<s;i++)
   cout<<a[i]<<"  ";
}


Void select(int a[], int s)
{
 for(i=0;i<s;i++)
  {
   for(j=i+1;j<s;j++)
   {
    if(a[i]>a[j])
    {
     temp=a[i];
     a[i]=a[j];
     a[j]=temp;
    }
   }
  }
  cout<<"The array after SELECTION sorting is : ";
  for(i=0;i<s;i++)
  cout<<a[i]<<"  ";
}
void main()
{
  clrscr();
  int s,i,j,temp,a[20];
  cout<<"Enter size of the array : ";
  cin>>s;
  cout<<"Enter the unsorted array :";
  for(i=0;i<s;i++)
  cin>>a[i];
  cout<<” [1] BUBBLE SORT “;
  cout<<” [2] SELECTION SORT “;
  cout<<” [1] INSERTION SORT “;  
cin>>ch;
switch(ch)
{
 Case 1: start=clock();
         Bubble(a,s);delay(100);    
         End=clock();
         cout<<"\n Time complexity "<<(end-start)/CLK_TCK;    
         break;      
 Case 2: start=clock();
         select(a,s);delay(100);    
         End=clock();
         cout<<"\n Time complexity "<<(end-start)/CLK_TCK;
         break;
 Case 3: start=clock();
         insert(a,s);delay(100);    
         End=clock();
         cout<<"\n Time complexity "<<(end-start)/CLK_TCK;
         break;      
       
};
  getch();
}





OUTPUT

[1]. BUBBLE SORT
[2]. SELECTION SORT
[3]. INSERTION SORT
Enter choice :1
Enter size of the array : 5
Enter the unsorted array : 67 89 45 56 13
The array after BUBBLE sorting is : 13  45  56  67  89
TIME COMPLEXIBILTY : 0.109
   


 AIM :  PROGRAMME TO  FIND THE COMPLEXITY OF QUICK SORT
#include<stdio.h>
#include<time.h>
#include<conio.h>
#include<dos.h>

void quicksort(int [10],int,int);
void main(){
  int x[20],size,i;
   clock_t start,end;
  printf("Enter size of the array: ");
  scanf("%d",&size);

  printf("Enter %d elements: ",size);
  for(i=0;i<size;i++)
    scanf("%d",&x[i]);
   start=clock();
  quicksort(x,0,size-1);
   delay(100);
end=clock();
  printf("Sorted elements: ");
  for(i=0;i<size;i++)
    printf(" %d",x[i]);
 cout<<”COMPLEXITY  is :”<<(end-start)/CLK_TCK;
  getch();
}

void quicksort(int x[10],int first,int last){
    int pivot,j,temp,i;

     if(first<last){
         pivot=first;
         i=first;
         j=last;

         while(i<j){
             while(x[i]<=x[pivot]&&i<last)
                 i++;
             while(x[j]>x[pivot])
                 j--;
             if(i<j){
                 temp=x[i];
                  x[i]=x[j];
                  x[j]=temp;
             }
         }

         temp=x[pivot];
         x[pivot]=x[j];
         x[j]=temp;
         quicksort(x,first,j-1);
         quicksort(x,j+1,last);

    }
}

Output:
Enter size of the array: 5
Enter 5 elements: 3 8 0 1 2
Sorted elements: 0 1 2 3 8
Complexity is : 0.10989               





For Updates Please revisit again or Bookmark us (ctrl+D)

No comments:

Post a Comment

This Blog is not managed by anyone, If you are interested then Contact me avinashkgec@gmail.com

Related Post